锂离子电池是一种高容量长寿命环保电池,具有诸多优点,广泛应用于便携式电子产品、电动汽车和储能等领域。随着社会经济的发展,以电动汽车为代表的动力、储能等领域对锂离子电池的比能量、寿命、安全性和成本提出了更高的要求。
而锂离子电池是一个复杂系统,其性能不仅取决于电极材料、电解液和隔膜,同时电芯的结构、制造设备与工艺、环境、电芯成组和生产管控对其也有重大影响。目前,电池技术的研究热点主要集中在电极材料的改性优化、新材料的开发、电化学过程与机理研究,以及新型电池的探索等方面。
材料是电池的基础,设计与合成性能更优的新材料是不断提高电池性能的手段之一,然而锂离子电池的性能与电池内电子的传输、锂离子在固相或电解液中的传输及其嵌入/脱嵌等物理化学过程密切相关。除了电极材料的固有特性外,电池极片微观结构对这些过程也具有重要的影响。
目前,为了解决电动汽车续航里程问题,提高能量密度是锂离子电池发展的一个重要方向。制备高涂布量的超厚极片是提升电池比能量的一个最直接的办法,这样可以有效降低非活性物质所占的比重,如集流体、极耳、电池壳体等。
随着极片厚度的增加,较低倍率下,电池比能量相应增加;然而在较高倍率下,锂离子扩散动力学受限,电极活性物质利用率随之下降,电池能量密度受损。因此,对于厚极片,为了在保证高载量的同时确保锂离子扩散速度以及活性物质的充分利用,设计和优化电极的微观结构更加重要。
由于具有很高的比容量,发展硅基负极也是提高锂离子电池能量密度最有效的途径之一。然而,作为活性物质,硅材料存在的主要问题有:充放电时,体积膨胀达300%~400%;与锂合金化后,晶体硅体积出现明显的变化,这样的体积效应极易造成硅负极材料粉化,并且从集流体上剥离下来。而且由于硅体积效应造成的剥落情况会引起固体电解质膜(SEI)的反复破坏与重建,从而加大了锂离子的消耗,最终影响电池的容量。
不可逆容量高、库伦效率低导致电池实际容量低、循环寿命差。目前研究者正在通过硅粉纳米化,硅碳包覆、掺杂和粘结剂优化等手段解决这些问题。而硅基电极设计方面同样需要优化微观结构。此外,电池的能量密度和功率密度是两个重要的参数,但二者又是相互矛盾的,如何通过电极微观结构的优化设计来平衡这二者也是电极设计的关键。
本文结合锂离子电池最新发展趋势,综述了锂离子电池极片微观结构的优化以及可控制备技术最新进展,分为以下几个部分:
第一部分对锂离子的嵌入和脱出的基本过程进行了概述;
第二部分总结了研究电极微观结构的几种主要表征方法;
第三部分重点阐述了锂离子电池极片微观结构特征及其优化手段;
第四部分介绍了电极可控制备的最新技术
第五部分做了总结,并展望了未来的发展趋势和研究热点。
1 锂电池电极反应基本过程
锂离子电池主要由正极极片、隔膜、负极极片以及填充在极片和隔膜孔隙内的电解液等基本部分组成,锂离子电池的充放电过程是耦合电化学反应的多物理量传输、传递过程。
充电时,正极颗粒内部的锂离子扩散至颗粒表面,正极材料在电解液/电极颗粒两相界面发生氧化,锂离子脱出正极、进入电解液中,通过在电解液中的扩散和迁移传递到负极颗粒表面,然后通过两相界面的电化学反应嵌入负极颗粒中,并从颗粒表面向内扩散;而电子则通过外电路从正极一侧向负极迁移。放电时,锂离子和电子的传输方面与之相反。在充放电过程中,电池内部的电化学过程具体包括3个方面:
第一,锂离子的传输,具体又包括3个部分:
1)锂离子在电极孔隙的电解液中的传输过程,与孔隙率、孔结构、电极/电解液的润湿性相关;
2)锂通过SEI膜的扩散过程,受SEI膜成分、厚度等影响;
3)锂在电极材料固体颗粒内部的扩散,与原材料的基本特性相关。
随着电极厚度的增大,锂离子在电极孔隙中的传输成为电池充放电过程中的决速步骤,因此,电池性能与电极涂层中三维孔结构,如孔径大小及其分布,孔隙连通性,孔隙喉道特征等密切相关。
第二,电子的传输:
1)电子在集流体/电极界面的传导;
2)多孔电极基体中的电子传导,传导路径为电极涂层中的固体组分,主要包含两个部分:活性物质颗粒相、导电剂构成的三维网络。在正极极片中,活性物质颗粒的电导率很低,电子传导主要通过分布在活性物质颗粒之间的与粘结剂胶合在一起的导电剂网络传输。因此,极片中电子的迁移通道由导电剂三维网络骨架组成,迁移速率主要取决于涂层与集流体的界面结合状态、涂层中导电剂的分布状态等因素。
第三,电极/电解液界面处发生电荷交换:
1)电荷在电解液/电极界面的交换,伴随着电化学反应;
2)界面处存在赝电容,形成双电层,并与活性物质颗粒比表面积密切相关。
2 锂电池极片微结构表征技术
2.1 微观成像技术
极片微观结构对电池性能具有决定性的影响,如何表征和描述微观结构是关键的第一步。目前,研究电池电极微结构常用的成像方法包括光学显微镜(OM)、扫描电子显微镜(SEM)、聚焦离子束-扫描电子显微镜(FIB-SEM)和高空间分辨率的X射线显微成像(XCT)。
虽然OM和SEM能够获得许多详细的微观结构与形貌信息,但这只能获得二维信息,三维成像技术能够获取更加详细具体的电极信息,对研究电极微观结构与机理非常必要。研究锂离子电池极片微观结构细节的报道主要采用FIB-SEM和XCT技术。
FIB-SEM技术是一种高空间分辨破坏性成像技术。在使用该技术对锂离子电池电极进行3D研究的典型案例中,需要采用聚焦离子束在电极基片上切出类似正方体形状,用SEM对正方体的侧面进行形貌扫描,然后利用FIB把这个侧面切除几十纳米,再使用SEM进行形貌扫描,将反复切除和扫描成像后形成的系列图片进行3D重构,如图1所示。所形成的3D结构分辨率高,一般为几十纳米,能够清晰地区分活性物质、导电剂和粘结剂混合相以及孔洞。
近年来,文献报道采用这种技术研究了LiFePO4(LFP)等极片,从3D重构结构单元可以获得量化的微观形态参数,包括各相体积分数、表面积、特征尺寸分布、孔道流通性和迂曲度等,也可以对比研究电池循环过程中微观形态的演变过程[7]和电极失效机理。但是由于样品需要层层切割,样品信息采集耗时长,测试成本高,而且样品尺寸不能太大,一般20~30μm,这种小的微观结构体积单元往往仅仅只包含了2~3个活性物质颗粒,并不具备代表性,无法对电极微观结构特征(如颗粒尺寸分布、比表面积、迂曲度等)进行统计分析。
图1 FIB-SEM测试过程示意图
锂离子电池极片厚度一般为50~300 μm,为获取全面详细的统计学结构特征,样品尺寸需要几百微米,XCT技术能够无损检测样品的内部结构,具有高穿透性、友好的成像环境和丰富的衬度机制等特点,能够获取大尺寸电极样品的微观结构。
XCT测试电池极片微观结构时,以X射线照射样品,部分X射线被吸收,透射的光束通过闪烁体探测器转换成可见光,经过放大处理最后在电荷耦合元件(CCD)图像传感器上形成可见光图像。旋转样品或者调节X射线强度,形成了一系列投影图像。然后将系列图像通过计算机软件重构形成3D图像,测试原理示意图见图2。随着XCT技术的进步,空间分辨率也不断提高,已经从微米级达到纳米级分辨率,使用Zernike相位衬度也可以辨别碳胶相(导电碳和粘结剂)的分布。
图2 XCT测试过程示意图
Ebner M等[14]采用同步辐射X射线断层显微技术研究了不同导电剂和粘结剂比例、不同压实密度的LiNi1/3Mn1/3Co1/3O2(NMC)电极,重构获取了111μm×111μ m×37μm的三维微观结构体积,并统计分析了大体积单元的粒径分布和孔隙率等特征,但孔洞、炭黑和聚合物粘结剂的X射线吸收差异小而无法鉴别。
Wang课题组采用X射线成像技术研究了LCO和NMC混合电极的微观结构,利用吸收衬度原理区分混合电极中的LCO和NMC两种活性物质颗粒,利用Zernike相位衬度成像原理成功分辨了混合极片中的导电剂和粘结剂混合相。
Babu等利用纳米尺度XCT研究电池极片时,分别利用吸收衬度模式辨别高原子序数的LCO活性物质相,以及Zernike相位衬度辨别低原子序数的碳胶相,成功重构了活性物质、碳胶相和孔隙三相的电极微结构(图3)。以XCT作为研究工具,研究者们还研究了LFP电极的迂曲度、中间相碳微球负极的微观结构和工艺条件对NMC正极活性物质颗粒形态的影响等。
图3 钴酸锂正极极片表面(a)和截面(b)的3D重构结构
XCT技术是通过X射线照射样品时,重原子吸收部分X射线形成的衬度成像,而且样品制备时常需在孔洞中填充环氧树脂,区分电极中的碳胶相/孔洞比较困难。为了获得高分辨率、全面详细的电极微观结构特征,近年来研究者们结合FIB-SEM和XCT技术的优点,联合这两种成像技术进行多尺度的微观结构成像。
Zielke等首先利用XCT技术重构活性物质颗粒的3D框架结构,然后利用FIB-SEM技术获取碳胶相的体积分数、以及与活性物质的连接比例,将这些参数输入随机网格模型重构孔隙中碳胶相分布结构,最后再利用FIB-SEM技术获取更细微的碳胶相内部纳米孔隙结构,根据实验数据,使用随机网格模型生成碳胶相纳米级结构,综合三者得到包含纳米孔隙特征的电极3D结构,微结构重构过程如图4所示。此外,Etiemble等也综合FIB-SEM和XCT技术,研究了NMC和LFP混合电极在厚度方向上活性物质颗粒大小和各相体积分数的分布情况。
图4 包含微米和纳米孔隙的电极3D微结构重构过程
2.2 计算机仿真技术
计算机仿真也是研究电极微观结构特征的一种高效方法,常应用于电极材料设计、电池极片设计和电极反应过程分析。锂离子电池的电化学模型描述了电池内部不同组分复杂的物理-化学过程和机理,在优化锂离子电池的性能、设计、耐久性和安全性方面发挥重要作用,而且锂离子电池模型能够从宏观到纳米多尺度研究电极反应机理过程。电极的微观结构几何特征是电化学模型的重要输入参数,目前,锂离子电池极片微观结构几何模型主要包含以下几类:
1)均匀多孔电极微结构的伪二维模型;
2)采用随机统计学方法生成的二维或三维微观结构模型;
3)基于真实电极微结构的几何模型。
结合近几年的最新研究进展,本部分对这三类电极微观结构模型进行介绍。
2.2.1 均匀多孔电极微结构
1993年,Doyle和Newman基于多孔电极和浓溶液中物质传输过程及电化学反应动力学过程,建立了锂离子电池的电化学模型,该模型在正负极极片厚度方向和活性物质颗粒半径方向两个维度,精确地描述了负极、隔膜和正极区域内的法拉第效应、活性物质颗粒内部锂离子扩散、表面电化学反应、电解液中锂离子扩散与迁移以及欧姆定律等物理化学现象,具有很高的仿真精度。
这类模型着眼于宏观过程,假设电极和隔膜的固相微结构为均匀多孔结构,即电极和隔膜内任意位置均为电解液和固体混合物组合而成,表征多孔电极形态的参数是各组元体积分数和孔隙率,通常假设固体活性物质为球状颗粒。
如图5所示,伪二维模型将电池几何结构简化为一维线段,在x轴方向将电池内部结构主要分为负极、隔膜和正极3个区域,在活性物质颗粒半径r轴方向考虑锂在固体内部的扩散,模型只能获得锂离子浓度、电势和电流密度等参数的一维分布,而且均匀多孔结构与实际电池内部复杂的微孔结构差异也很大。因此,宏观多孔模型对电池细微尺度传输机理的研究和电池内部介观微结构的设计与优化贡献有限。
图5 锂离子电池伪二维模型示意图
2.2.2 随机模型生成电极微结构
电极微结构中各物相的连通性、比表面积、微孔形态、以及孔径分布等特征参数对电极性能有重要影响。描述和分析电极介观微结构对锂离子电池内多物理传输机理的影响,研究限制或影响电池性能的关键参数,从而设计与优化电极的介观微结构,探究电池性能与电极介观微结构的关系,是锂离子电池数值模型的重要发展方向;采用实验或数值方法进行电极微结构重构是孔尺度数值模型的基础和前提,对重构微结构进行特征化分析,获取重要的结构或特性参数对电极微结构设计与优化有重要参考价值。
数值重建方法主要有高斯随机场法、模拟退火法、四参数随机生长法、蒙特卡罗法以及过程重建法等,基于重构的微观几何构型,再应用格子玻尔兹曼方法(LBM)、或者有限元方法模拟电池的电化学过程。
蒋方明等开发了锂离子电池的多尺度数值模型,包括格子玻尔兹曼方法(LBM)、模拟退火法、蒙特卡罗法等介孔尺度数值模型,数值模拟揭示电池性能与电极介孔结构的关联性,对电极的介观构型和微孔结构进行虚拟设计,揭示相关物理-化学机制。
Feinauer等采用高斯随机场作为形成正极球形颗粒的模型,同时还使用了随机几何和空间统计学方法,模拟真实粒子的几何形状,并根据实验数据对模型进行了验证,以证实模型真实地描述了正极微观结构的主要特征。
Kriston等通过模拟涂层的制备工艺,考虑了电极结构实际沉积形成过程中颗粒之间的相互作用,开发了基于涂层形成过程的孔尺度模型。用不同的均匀化方法计算沉积层的有效输运性质和动力学系数,并应用于宏观均匀模型来预测锂离子电池的宏观行为。
2.2.3 基于真实电极的微观结构
通过成像技术获取三维微结构特征,再基于真实数据对电极微观结构进行重构,这样可形成真实电极的微观结构实验方法能还原多孔介质孔隙相和各固相的真实形貌,清楚地辨识各种不同组成成分,基于实验获取的真实电极微结构作为锂离子电池模型的几何输入,模拟结果更符合实际。
Hutzenlaub等采用FIB-SEM成像技术获取真实的LCO电极活性物质、碳胶相和孔隙三相微观结构,直接将3D微结构应用于电化学模型(如图6所示),还观察到了电解液中锂浓度分布的局部不均匀性。
Nelson等则用纳米X射线断层扫描仪进行形貌成像分析,对原料、快速干燥、辊压压实和球磨这4种不同工艺阶段的正极活性物质颗粒样品进行了表征和比较,在介观尺度几何形貌、性能和加工工艺之间建立了紧密的联系,从而实现对电池性能的调控。
Wu等利用同步加速X射线成像技术重建了NMC半电池的结构,利用该模型研究了在不同的倍率下NMC材料的化学反应和机械应力的产生。
Kashkooli等采用纳米X射线断层扫描技术获取电极的真实微观结构,将具有代表性的体积单元作为几何模型应用于电化学模拟,结果发现充放电状态和锂浓度分布表现出局部不均匀,明显不同于伪二维模型的结果。基于真实电极的微观结构,应用电化学模型模拟电池充放电过程,能够获取局部不均匀性、电极微结构极化特征等详细全面的信息,模拟结果也更接近实验结果。
图6 正极真实结构应用于电池电化学模型计算域
2.3 电化学分析方法
电化学测量技术表征锂离子电池多孔电极的微观结构与电化学方面的特性,也是一种有效手段,主要研究电池或电极的电流、电势在稳态和暂态的激励信号下随外界条件变化的规律,测量反映动力学特性的参数与其它方法相比,所得到的参数更加接近于真实的电极反应状态。例如利用交流阻抗谱技术可研究电极厚度、粒径分布、孔隙迂曲度和电解液/电极界面等微观结构特征对电极反应过程及电池性能的影响。
3 电极微观结构的优化
锂离子电池极片的微观结构受到制备工艺的影响,又直接决定电池的最终性能,电池极片微观结构的优化至关重要电池极片是一种多孔复合材料,其微观结构示意如图7所示,
图7 正极极片典型微观结构示意图
包括至少4个区域:
1)活性物质颗粒,在电化学过程中主要脱出或嵌入锂离子;
2)导电剂与聚合物粘结剂相互混合的区域,它们分布在活性物质颗粒之间,相互连通形成三维网络结构,粘结剂使活性物质颗粒粘结在一起,导电三维网络是极片内部电子传输的主要通道;
3)固体相之间的微观孔隙空间,这些孔洞也相互贯通,需要填充满电解液,孔隙内的电解液相是极片内部锂离子传输的主要通道;
4)金属集流体,与电池外部相连,收集电子并与极片内部实现传输。极片涂层中各相的体积分数具有式(1)所描述的关系:
φAM+φCA+φB+ε=1(1)φAM+φCA+φB+ε=1 (1)
式中,φAM为活性物质相体积分数,φCA为导电剂相体积分数,φB为粘结剂相体积分数,ε为极片孔隙率,即电解液相体积分数。导电剂和粘结剂相互混合在一起,很难区分。
3.1 锂离子传输通道:孔隙分布
锂离子电池极片涂层中,孔隙是重要的结构特征,填充满电解液,成为锂离子传输的主要通道。极片涂层中多孔结构特征,具体包括孔径大小与分布、喉道尺寸、连通性和迂曲度等重要参数,均与锂离子的传输特性密切相关。
孔隙率是指电极涂层中孔洞所占体积分数,可通过涂层的体密度,涂层各组分质量百分比和涂层组分真密度来计算得到,由式(2)表示。
(2)
式中,ε为极片涂层孔隙率,ρcoat为涂层体密度,ω为涂层组分质量百分比,ρ为涂层组分真密度。下标AM、CA、B分别表示活性物质、导电剂和粘结剂。锂离子电池极片中一般存在多种尺度的孔隙:1)活性物质颗粒之间的微米级孔隙;2)活性物质颗粒内部的孔隙,尺度为纳米-亚微米级;3)导电剂和粘结剂混合相内部的纳米尺度孔隙。
电解液填充在多孔电极的孔隙中,锂离子在孔隙内通过电解液传导,传导特性与孔隙率密切相关。孔隙率越大,相当于电解液相体积分数越高,电解液浸润就越充分,有效锂离子电导率也越大。
而正极极片中,电子通过碳胶相传输,碳胶相的体积分数和碳胶相的连通性又直接决定电子的有效电导率。孔隙率和碳胶相的体积分数是相互矛盾的,孔隙率大必然导致碳胶相体积分数降低,因此,锂离子和电子的有效传导特性也是相互矛盾的。
随着孔隙率降低,锂离子有效电导率降低,而电子有效电导率升高。因此,孔隙率的优化是电极设计的关键。
Jiang等采用晶格玻尔兹曼模型,模拟了电子和锂离子在多孔电极中的传输过程,重点考察了颗粒尺寸,极片孔隙率对电子和离子传输的影响。结果表明,小颗粒和大孔隙率的正极极片,以及大颗粒和小孔隙率的负极极片能够提高电池高倍率性能和活性物质利用率。商业化锂离子电池极片孔隙率一般为20%~40%。
近年来,提高能量密度成为发展锂离子的重要方向。电极工程方面,制备高涂布量的超厚极片是提升电池比能量的一个最直接的办法,而厚极片中锂离子在电解液中的迁移阻力增加是影响倍率特性的主要原因,特别是当电解液能够浸润的深度小于极片的厚度或与极片厚度相差不大时,锂离子在极片内的扩散过程受限,电解液通道成为影响电化学过程的主要因素。
Chen等采用多物理量的有限元模型模,主要从电子导电率、离子导电率、比能量等方面优化了极片的孔隙率和极片厚度。并提出,对于厚极片(250~400μm),锂离子长距离的扩散是限制因素,需要采用高孔隙率的极片设计策略。
针对硅基负极,需要考虑硅基电极在充电过程中的体积效应。Heubner等从理论计算上优化硅基极片孔隙率和厚度,由于充电过程中硅基材料体积膨胀会填充电极中原本的孔隙而降低孔隙率,为了避免由此引发的电极颗粒接触产生剧烈的变形和应力,以及孔隙率剧降造成的电解液锂浓度低等问题,电极初始孔隙率存在一个阈值,电极设计时,孔隙率必须大于此值。
因此,在硅基负极设计中,极片应该比石墨负极具有更大的孔隙率,甚至高达60%~70%,高孔隙率能够缓冲硅基材料的体积膨胀,限制极片的变形,减缓涂层从集流体脱落。
Zhao等实验验证了硅基负极孔隙率增加可以提升电池性能,他们在浆料搅拌阶段将NaCl加入SiO电极浆料中,在其它条件相同的情况下,电极性能明显优于传统方法制备的电极,在100个循环后容量依旧维持在3mA·h/cm2以上。这是由于加入10%的NaCl能够产生足够的内部孔隙,从而稳定了电池的循环。电极中活性物质的体积膨胀阻碍了离子传输,增加孔隙率能够促进锂离子的传输以及给SiO预留一定的膨胀空间,从而提高了电极的机械稳定性。
为了进一步提升电池的能量密度和功率密度,从锂离子电池电极反应动力学过程出发,研究者们更加精细地设计极片的微观结构。从集流体到电极表面孔隙率逐渐提升的电极不但能够保证足够的离子扩散速度,还能保证良好的电子传导特性。
Subramanian等采用数值计算的方法优化极片厚度方向的孔隙率分布,他们将极片沿厚度方向分成 N段,分别设计每段的孔隙率,降低极片的电阻。结果表明,从集流体到隔膜孔隙率逐步升高,当N=5时,与单一恒定孔隙率为0.4相比,极片离子电导率性能提高17.2%,与单一孔隙率0.2相比,性能提高4%。如果继续增加极片厚度方向的分段数N来优化孔隙率,电极性能提升少,而极片实际制备工艺难度增加。
Golmon等和Dai等基于数学模型分析发现,随着电极活性物质装载量和倍率增加,电极极化现象加重,而梯度孔隙率的电极设计能够有效降低极化程度,提升能量密度。最近,Du等也采用伪二维电化学模型模拟了极片厚度方向孔隙率分布函数对电池比能量的影响,研究结果也表明孔隙率在正极厚度方向的梯度分布优化能够提升电池比能量。
孔隙率梯度电极优化的实验验证方面,通过采用不同的活性物质形态可以实现孔隙率的控制。如一般活性物质颗粒尺寸减小,则涂层体密度增加,孔隙率会更低。活性物质的粒径分布也会影响电极的孔隙率,活性物质颗粒的粒径呈现多峰分布时,电极孔隙率要低于呈单峰分布的活性物质颗粒。
另外,通过在电极浆料中加入添加剂改变材料的团聚状态也可以调节电极的孔隙率。利用上述方法,通过多层电极工艺就能够实现电极孔隙率梯度分布设计,从而在保证功率密度的条件下提升电极能量密度。
Huang等采用超音速悬浮液雾化和自动喷涂沉积工艺制备双层涂层,首先在集流体上制备一层厚度约6.1μm的多孔钛基材料涂层,材料粒径约200nm,孔径40 nm。然后再在上面沉积一层无孔钛基材料。多孔TiO2内部孔洞有利于锂离子的扩散,从而提高倍率特性,但是如果全部使用多孔颗粒,电池体积能量密度很低。
双层电极结构能够同时保证高体积能量密度和高功率密度特性。Bitsch等则在浆料中加入辛醇,使得炭黑导电剂表面张力减小、更容易团聚,涂布电极的孔隙率从53%提高到了66%。
实验中他们首先喷涂一层常规浆料,之后直接在湿浆料涂层上二次涂布加入辛醇的浆料,所形成的的双层电极孔隙率不同,结合高孔隙率电极的优势,同时也获得了较高的电极质量密度,提升了电池的能量密度和比能量。
多孔电极中,除孔隙率之外,孔隙迂曲度也是与传输特性相关的一个重要参数。有效扩散率、传导率等 Deff输运物性的关系可用式(3)表示:
(3)
式中,D0表示材料本身固有扩散(传导)率,ε为多孔电极中的孔隙率,τ为孔隙的迂曲度。多孔介质中,如图8所示,将两点之间实际传输路径长度Δl与直线距离Δx比值的平方定义孔隙迂曲度,表达为式(4):
(4)
图8 多孔介质传输迂曲路径二维示意图
在宏观均质模型中,一般采用Bruggeman关系式(5)表示,取系数α=1.5来估计多孔电极的有效物性。
(5)
而实际的锂离子电池多孔电极中,孔结构并非均匀分布,结构和形态复杂,很难直接测量得到孔隙迂曲度。为了获取真实的孔隙特征,研究者致力于开发高效快捷的迂曲度测量方法,修正宏观均质模型中描述孔隙迂曲度的Bruggeman指数。
Ebner等从X射线断层扫描重构3D电极结构中发现了孔隙的局部不均匀性,结合X射线成像技术分辨活性物质相的特点,把电极的孔隙迂曲度分为活性物质相和非活性物质相形成的迂曲度,整个电极的迂曲度是两者的乘积,假定非活性物质相的迂曲度遵循Bruggeman关系,而活性物质相的迂曲度直接从3D结构数据计算。基于微分等效介质理论,他们还开发了一个软件专门快速评估锂离子电池极片的孔隙迂曲度。
输入电极表面和横截面两张扫描电子显微镜照片,软件通过分析每个活性物质颗粒的a、b、c三轴的数值和分布状态计算迂曲度。Dubeshter采用气体输送阻力测量方法测定锂离子电池正负极极片的孔隙迂曲度,并发现实验测量的迂曲度明显比Bruggeman关系描述的高很多。
Cooper等和Vadakkepatt等将实验重构的3D电极微结构网格化后,利用流体力学模拟多孔电极的热交换来计算孔隙迂曲度。而Chen-Wiegart等[59]则直接在FIB-SEM重构的3D电极结构中测量孔道实际长度来计算迂曲度。
锂离子电池多孔电极的孔隙迂曲度还存在各向异性。Ebner等制备了球形NMC颗粒、椭球形LCO颗粒和片状石墨3种电极,然后采用X射线断层扫描成像技术重构电极微结构,通过扩散模拟计算得到平行于集流体的x和y轴方向以及垂直于集流体的z轴方向的孔隙迂曲度与孔隙率的关系曲线,如图9所示。
从图9中可见,球形的NMC电极,3个方向迂曲度指数一致,迂曲度各向同性;而对于非球形颗粒电极,z轴与x、y轴表现出各向异性,迂曲度更大,而片状石墨z轴迂曲度差异最大。
SEM观察电极形貌发现,在常规工艺过程中片状石墨倾向于平行于集流体方向分布,堵塞了孔隙通道,造成了z轴方向迂曲度大。而锂离子电池离子传输方向主要是垂直于集流体的z轴,因此,非球形的活性物质颗粒电极离子传输阻力大,电池倍率性能差。
图9 迂曲度与孔隙率的关系
锂离子电池极片中离子主要在垂直于集流体的z轴方向上传输,而传统工艺制备的电极往往在这个方向迂曲度更高,限制了锂离子的传输速率,而且随着极片厚度增加时,锂离子传导距离增加,考虑到孔隙率和孔隙的曲折连通,锂离子在孔隙内的迁移距离比极片厚度多出很多倍。
研究者们对锂离子电池极片微观结构进行设计,电极内部包含垂直于集流体的孔道,在z轴方向降低迂曲度,提升锂离子的有效扩散系数和电解液浸润程度,从而提升电池的倍率性能和活性物质利用率。Chiang等设计了一种包含垂直孔道的电极以降低迂曲度,如图10所示。经过孔道直径和间距的优化,通过计算发现这种结构能够有效降低迂曲度,提高锂离子有效扩散系数。
Mohammadian等采用数值模拟的方法证明了这种包含垂直孔道的电极能够有效改善电解液的浸润性,提高活性物质利用率并降低热失控风险。基于这种结构,Chiang等分别采用挤压烧结法、电极浆料定向冷冻法和磁场控制涂布法制备了LCO和NCA电极,电极面容量可达到12mA·h/cm2,是传统电极的3倍。Billaud等采用磁场控制涂布法制备了片状石墨负极,使片状石墨垂直集流体排列,降低孔隙迂曲度4倍,提升了电池的倍率性能。
俞书宏等利用自然界树木的导管结构,制备了一种具有垂直微孔结构的超厚LCO正极,降低了电极孔隙的迂曲度,从而降低锂离子在电极内的传输阻力,在高负载量的情况下也能够保证电池的循环性能和倍率性能。LCO的负载量最大可达160 mg/cm2左右,是传统工艺的4~5倍。
图10 活性物质颗粒多孔电极基体上的周期孔道阵列
3.2 电子传输通道:导电剂分布
为了保证电极有良好的充放电性能,在极片制作时通常加入一定量的导电剂,在活性物质之间和涂层与集流体之间起到收集电流的作用。理想的导电剂分布是:
1)导电剂均匀分散,在活性物质颗粒表面形成导电薄层;
2)导电剂与活性物质颗粒表面紧密接触,使电子能够有效参与脱/嵌锂反应;
3)导电剂之间相互连通导电,从集流体到每一个活性物质颗粒形成电子通路。
导电剂在电极中的作用是提供电子传输的通道,导电剂含量适当能获得较高的放电容量和较好的循环性能,含量太低则电子导电通道少,不利于大电流充放电,会导致电极中活性物质利用率低;太高则降低了活性物质的相对含量,使电池比能量降低。
声明: 本网站为冲压和钣金业内信息集合和展示平台,欢迎不同的声音和观点,为行业人士提供参考,文章并不代表MFC的观点。书面刊用本站及MFC《金属板材成形》的原创文章,必须获得MFC的书面授权;电子平台转载,则必须注明作者和出处,对于盗版、冒名和不注明出处等行为以及由此产生的负面后果,MFC保留追究的权利。